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Three-dimensional non-linear oscillations of a rod
with hinged supports�
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Abstract

The free and forced flexural oscillations of a rod with hinged supports are investigated analytically and numerically. The geomet-
rical non-linearity due to the change in the length of the central line of the rod accompanying its three-dimensional motion is taken
into account. The oscillations of a rod with different natural frequencies in two mutually perpendicular directions as a consequence
of the variance in the flexural stiffnesses of the rod or the stiffnesses of the supports in the different directions, are considered. It is
shown in the case of natural oscillations that, together with two planar forms of motion, a form exists when a certain threshold value is
exceeded, which corresponds to the motion of the cross-sections of the rod in a circle. The amplitude-frequency and phase-frequency
characteristics of the system are constructed and qualitatively investigated in the neighbourhood of the principal resonance.
© 2006 Elsevier Ltd. All rights reserved.

A relation between the oscillations in different directions, which leads to the existence of both planar forms of motion
as well as three-dimensional forms, in which points of the string move in a circle, has been discovered in investigations
of the oscillations of a string with fixed supports.1–3 In the case of forced oscillations, a range of frequencies exists in
the neighbourhood of the principal resonance at which stable parametric oscillations occur in the plane orthogonal to
the action of the generating force and the overall motion of the points occurs along an ellipse.

The existence of planar and three-dimensional forms of motion has also been found in the numerical investigation
of the three-dimensional oscillations of an inelastic4 and an elastic5 thread with a tensioning device, with the difference
that the system has a weak elastic rather than a stiff elastic characteristic.

The equations which describe the planar flexural oscillations of a rod and a string with fixed supports reduce to
the same form in dimensionless variables6 and, in this case, the qualitative results will be the same. The non-linear
oscillations of shallow curvilinear rods in the plane of curvature has been considered earlier in Ref. 7.

1. Formulation of the problem

Suppose the central axis of a rod in the undeformed state coincides with the x axis of a rectangular system of
coordinates and the principal axes of inertia of the cross-section are parallel to the y and z axes. The coordinates x = 0
and x = L correspond to the ends of the rod. We will denote the displacements of the points of the centre line of the rod
by u, v and w. In the technical theory of the flexure of a rod, the longitudinal deformation at a point of the cross-section
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with coordinates y and z is equal to

(1.1)

A derivative with respect to x is denoted by a prime, �0 is the deformation of the centre line of the rod and we neglect
the term u′2/2. This relationship enables us to take account of the elongation of the centre line due to displacements
along the y and z axes. The expressions for the potential and kinetic energy of the rod have the form

(1.2)

where E and � are the modulus of elasticity and the density of the rod material, F is the cross-section area, Jy and Jz

are the axial moments of inertia of the cross-section and a time derivative is denoted by a dot. Torsion is not taken into
account since, henceforth, the flexural oscillations of a thin rod in the neighbourhood of the first natural frequency are
principally considered.

We us the Hamilton–Ostrogradskii principle and obtain a system of three partial differential equations

(1.3)

Boundary conditions must be added to system (1.3) and, for the special case of a rod with hinged supports at the
ends, we have the boundary conditions

(1.4)

2. Natural oscillations

In the case of a thin rod, the normal modes of the longitudinal and flexural oscillations are separated: �x � �y,
�x � �z. Consequently, the quantity ü can be neglected in the first of Eq. (1.3) when investigating the oscillations in
the neighbourhood of the first frequency, from which it follows that �0 is independent of the x coordinate. Assuming
that there is no relative longitudinal displacement of the supports, according to boundary conditions (1.4), we obtain

(2.1)

Substituting this expression into the remaining two equations of (1.3), we have two integrodifferential equations in the
dimensionless variables

(2.2)

Here,

All of the displacements and the x coordinate are divided by the length of the rod L and differentiation with respect
to the dimensionless time, which is obtained from an initial multiplication by the frequency of the small natural
oscillations in the xy plane

is denoted by dots.
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We shall confine ourselves to the case of the single-mode approximation and represent the solution in the form

Substitution into (2.2) leads to a system with two degrees of freedom

(2.3)

where a small parameter � has been introduced and the substitution c = 1 + �� has been made, that is, the non-linearity
of the system and the difference between the natural frequencies are assumed to be asymptotically small, which enables
us to use efficient methods of non-linear mechanics.8,9

System (2.3) has a strong cubic non-linearity and, in view of the smallness of ��, phenomena of the internal resonance
type are characteristic of this system. A detailed investigation of a similar system has been carried out in Ref. 10 using
the multiscale method.

Making the change of variables

(2.4)

in system (2.3) and using the method of averaging, we obtain a fairly simple system of equations in the slow variables

(2.5)

where ak and �k are the amplitudes and phases of the partial oscillations, and the free oscillations are considered in a
small neighbourhood of a single frequency. System (2.5) has three solutions.

(1) a2 = 0. In this case, system (2.5) takes the form

and its solution is

Substituting the values of a1 and �1 obtained into relations (2.4), we obtain the oscillations of the rod in the xy
plane

(2.6)

where we have introduced the notation

(2.7)

Relation (2.7) describes the well-known dependence of the amplitude on the frequency of the natural oscillations
of a rod in a plane,6,9 which is represented by curve 1 in Fig. 1 for � = 1.

(2) a1 ≡ 0. The solution of system (2.5) is

Substituting a2 and �2 into relations (2.4), we obtain the oscillations of the rod in the xz plane

(2.8)
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Fig. 1.

where

(2.9)

Curve 2 (� = 1, � = 1) in Fig. 1 corresponds to relation (2.9).
The solutions (2.6) and (2.8) correspond to the planar oscillations of a rod in two mutually orthogonal planes.

Since the flexural stiffnesses are different (Jy �= Jz), the natural frequencies differ by an amount �/2.
(3) �1 − �2 = ±�/2. In this case, S1 = 0 and S2 = −1 in system (2.5) and its solution has the form

The parameter � is determined from the system of equations

the solution of which gives the amplitude-frequency dependence of the three-dimensional oscillations of the rod,
which corresponds to motion of the points of the centre line along an ellipse in the yz plane

(2.10)

The domain of frequencies exceeding � = 3�/4 corresponds to real values of a2 and, for three-dimensional
oscillations to occur, it is necessary that the amplitude a1 should exceed the critical value a* = (2�/�)1/2.

Curves 3 (a1(�)) and 4 (a2(�)) in Fig. 1 correspond to relations (2.10). Only planar oscillations are possible in the
system being considered when a1 < a* and a three-dimensional form of motion of the rod exists, together with the
planar motions, when a1 < a*. Hence, depending on the initial conditions, the natural oscillations of the rod are either
oscillations in mutually orthogonal planes with two different frequencies, which are independent of one another, or a
further three-dimensional form of motion with a third frequency of the oscillations is added to them. In the general
case, there are three harmonics with close frequencies in the resulting motion. In the case when � = 0, the qualitative
pattern of the oscillations corresponds to the solution obtained for the vibrations of a string1,4 which can be represented
as a sum of planar and three-dimensional motions.

3. Forced oscillations

Suppose external harmonic loads act on the rod in mutually perpendicular directions with a phase difference
	 = 	2 − 	1. The normalized external actions, which correspond to a first mode �f1cos[(1 + ��)t + 	1] in the xy plane
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and �f2cos[(1 + ��)t + 	2] in the xz plane, are assumed to be small, and we can confine ourselves to considering
oscillations in a small neighbourhood of the principal resonance. The equations of motion have the form

(3.1)

where 
 is a dimensionless dissipation coefficient.
Making the change of variables

in system (3.1), in the first approximation of the method of averaging we obtain the equations

(3.2)

We shall next consider steady forced oscillations which correspond to zero left-hand sides of Eqs. (3.2). An analytical
solution of system (3.2) can only be obtained in individual specific cases. We shall use the method of the continuation
of a solution with respect to a small parameter for the numerical solution of the corresponding system of non-linear

algebraic equations. If an approximate solution of the system of equations r = (ak
1, a

k
2, α

k
1, α

k
2)

T
is known for a certain

value �k, then, for a value �k + 1 = �k + ��k, the approximate solution can be represented in the form rk + 1 = rk + �rk.
Substituting into system (3.2) and linearizing the resulting equations, we determine the increments in the unknowns
from the system

(3.3)

where Rk is the vector of the discrepancy in the preceding step of the solution, pk = (0, 0, �k, �k)T and the elements of
the matrix G have the form (the superscript k is henceforth omitted)

(3.4)

Hence, the solution of the system of non-linear equations (3.2) reduces to the solution of the sequence of systems
of linear equations (3.3). At each step in the calculations, the magnitude of the discrepancy is checked and, if the
relative error exceeds the specified accuracy, then the step in the variable being varied is reduced. At the branching
points of the solutions, the variable which has the increment with the greatest modulus in the preceding step is adopted
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Fig. 2.

as the independent parameter, which enables us to find all of the existing solutions and to construct the multivalued
amplitude-frequency and phase-frequency characteristics.

To investigate the stability of the solutions obtained using the second Lyapunov method, we will consider a certain
perturbed solution of the system of equations (3.2) r̂ = (t) = r(t) + �r(t). After substitution into system (3.2) and
linearization, we obtain the equations of the perturbed motion in the first approximation �r = G�r, where the matrix
G is identical to the matrix appearing in Eq. (3.3). According to the theorems of stability using a first approximation,
the sign of the real part of all of the eigenvalues of the matrix G enables us to draw a conclusion regarding the stability
of the solution. Since the matrix is asymmetric, the QR-algorithm11 was used to solve the eigenvalue problem.

4. Results of numerical modelling

All the calculations were carried out for � = 1 and � = 1. The relations a1(�) and a2(�) are represented in Fig. 2 for
f1 = 1, f2 = 10−6, 
 = 0.3, 	 = 0, which corresponds to the case of the excitation of planar oscillations corresponding to
a smaller flexural stiffness. The value of f2 was taken to be non-zero in order to avoid an overflow error in Eqs. (3.2)
and (3.4) on division by a2. The segments corresponding to stable solutions are shown by the solid lines.

The known relation a1(�), which corresponds to planar oscillations (a2(�) ≡ 0), is represented by curve 1. Its
construction was started with a fairly small detuning of the frequencies and zero initial approximations for the amplitude
a2 and the phase �2. There are two branching points on curve 1: A1 and A2 to which the points B1 and B2 of the relation
a2(�) correspond (the points B1 and B2 merge in Fig. 2).

In the case when one of the two points, (A1, B1), for example, was adopted as the initial approximation, a solution
a1(�) (curve 2) and a2(�) (curve 3) was constructed, which corresponds to a three-dimensional form of the motion
of the centre line of rod. When the frequency of the excitation is increased, the planar oscillations smoothly become
three-dimensional oscillations for which the points of the axial line of the rod describe ellipses in a plane which is
orthogonal to the x axis, and the phase difference �1 − �2 is equal to �/2. A further increase in the frequency leads
to a jump at the point (A3, B3) to the planar form of motion of the rod. When the excitation frequency is reduced, the
three-dimensional form of motion is not obtained. A solution, which corresponds to the planar form (curve 1), can be
obtained from the solution of the planar problem, where the segment between the point A1 and the maximum of the
amplitude-frequency characteristic at the point A4 will correspond to a stable solution.

Analogous results for the case of the excitation of oscillation in a plane, corresponding to a greater flexural stiffness
when f1 = 10−6, f2 = 1, 	 = 0 are shown in Fig. 3 (
 = 0.18) and Fig. 4 (
 = 0.22). The relation a2(�) of the planar form
of motion corresponds to curve 1, and the relations a2(�) and a1(�) of the three-dimensional form correspond to curves
2 and 3. Unlike the preceding case, investigation of the stability of the solution of the planar problem leads to the
correct result everywhere apart from a small segment in the neighbourhood of the points (A1, B1) and (A2, B2). When
the frequency is increased, the planar form of motion when 
 = 0.18 passes smoothly into the three-dimensional form
and, at the point (A3, B3), there is a jump into one of the stable branches of the planar form 1. In experiments, the jump
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Fig. 3.

is usually observed into the upper branch of curve 1 and the subsequent oscillations occur in the plane of action of
the load. The point B4, which corresponds to the maximum amplitude of the planar form of motion, is not shown in
Figs. 3 and 4. The existence of from one to three stable solutions, two planar motions and a single three-dimensional
motion, is possible over different frequency ranges.

When the dissipation parameter is increased, the points (A1, B1) and (A2, B2) converge and, when 
 > 0.191, curves
2 and 3 become closed as in Fig. 4. In this case, at the point (A6, B6) there is a stable excitation of the parametric
oscillations in the xy plane. There are no stable steady-state solutions of system (3.2) in the narrow range of frequency
detuning between the points (A7, B7) and (A6, B6).

A further increase in dissipation leads to the fact that the loops formed by curves 2 and 3 become smaller and
disappear when 
 > 0.252. Three-dimensional forms of motion do not exist for larger values of 
.

The amplitude-frequency characteristics a1(�), a2(�) for f1 = f2 = 0.707, 
 = 0.25, 	 = 0, which correspond to the
case when the direction of the loading vector makes an angle of �/4 with the principal axes of inertia of the section,
are shown in Fig. 5. It follows from an analysis of the phase-frequency characteristics under pre-resonance conditions
that planar oscillations occur during which a1 > a2 and then, at the points of inflection of the curves, there is a smooth
transition into the three-dimensional form of oscillations up to the point (A3, B3). In the trans-resonance state to the
right of the point (A5, B5), planar oscillations occur and a1 < a2. For the given case of loading, it is characteristic for
there to be a stable segment bounded by the points (A2, B2) and (A4, B4) in which a transition is observed from a three-

Fig. 4.
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Fig. 5.

dimensional form of motion to a planar form of motion, and oscillations occur in practice in the plane corresponding
to greater flexural stiffness of the rod. This segment is isolated from the remaining stable solutions and is only realized
when there are external perturbations.

In all of the cases considered, two relations �1(�) and �2(�) correspond to each solution a1(�), a2(�). In the case
of the three-dimensional form of motion, the second solution corresponds to a rotation of the section of the rod in the
opposite direction and, in the case of the planar form of motion, it is unstable.
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